Laboratory 6
AC Circuits and Filters

Key Concepts:
- Voltage and Phase Relations in AC Circuits
- Low-pass, High-pass and Bandpass filters

Equipment Needed:
- Digital Multimeter
- Oscilloscope
- Protoboard

Components Needed:
- (2) 10 kΩ Resistor
- (1) 2.7 kΩ Resistor
- (2) 0.01 μF Capacitor
- (1) 1 μF Capacitor

Overview:
We have seen how resistors and capacitors may be used to shape waveforms. Here we will explore RC circuits in their use as filters. The laboratory has four parts:
Part A: Measuring AC voltages in RC circuits
Part B: Low Pass filters
Part C: High Pass filters
Part D: Bandpass filters

Procedure

Part A:
Construct the circuit shown below, with R = 2.7 kΩ and C = 1 μF. Set the function generator to produce a 10 Hz sine wave of 5 V peak-to-peak. Using the DMM as a voltmeter, measure V_{in}, the voltage across the resistor (V_R) and the voltage across the capacitor (V_C).

$V_{in} =$ ______________

$V_R =$ ______________

$V_C =$ ______________

Question: Is V_{in} what you expected? Explain.
Question: According to Kirchoff’s Voltage Law, $V_{in} = V_R + V_C$. Does this hold true for the DMM data? Why or why not?

Change the driving frequency to 1000 Hz and measure V_{in}, V_R and V_C again using the DMM.

$V_{in} =$ ________________ $V_R =$ ________________ $V_C =$ ________________

Question: If your data are different for the 120 Hz signal explain what is happening.

Part B:
Construct a low pass filter using the same circuit as above, with $R = 10$ kΩ and $C = 0.01$ µF. Use the oscilloscope to measure V_{out}, the peak voltage. Vary the driving sine-wave frequency from 10 Hz to 100,000 Hz in decade intervals (10, 100, 1000, etc). Also measure the phase angle between V_{in} and V_{out} for each frequency. Plot your results on the graphs below.
Question: The break-point frequency is given by $f_B = 1/(2\pi RC)$. For this circuit, calculate the theoretical break-point frequency.

$$f_B = \text{___________________}$$

From your graph above, estimate the actual break-point frequency.

$$f_B = \text{___________________}$$

Keeping in mind oscilloscope accuracy (about 5%), resistor tolerance (5%) and capacitor tolerance (about 20%), how does the theoretical value of f_B compare with the actual value?

Question: In terms of current flow in the circuit, describe why the phase angle between V_{in} and V_{out} changes as a function of frequency.

Question: Why is this circuit called a low pass filter?
Part C:
Construct a high pass filter by switching the resistor and capacitor in the previous circuit. As before, vary the driving sine-wave frequency from 10 Hz to 100 kHz in decade intervals and measure the peak voltage of \(V_{\text{out}} \) and phase angle between \(V_{\text{in}} \) and \(V_{\text{out}} \). Graph the results.

Question: The break-point frequency is given by \(f_B = 1/(2\pi RC) \). For this circuit, calculate the theoretical break-point frequency.

\[f_B = \text{___________________} \]

From your graph above, estimate the actual break-point frequency.

\[f_B = \text{___________________} \]
Keeping in mind oscilloscope accuracy (about 5%), resistor tolerance (5%) and capacitor tolerance (about 20%), how does the theoretical value of \(f_B \) compare with the actual value?

Question: In terms of current flow in the circuit, describe why the phase angle between \(V_{in} \) and \(V_{out} \) changes as a function of frequency.

Question: Why is this circuit called a low pass filter?

Part D:
We have constructed a low pass filter that filters out high frequencies and a high pass filter that filters out low frequencies. Often a filter is required which filters out both high and low frequencies but allows frequencies within a certain range to pass. This is a bandpass filter. It is basically a high pass filter added on to the output of a low pass filter.
Once again vary the driving frequency from 10 Hz to 100 kHz in decades and measure V_{out} and the phase angle. Graph on the two graphs below.

Question: Describe quantitatively how would the V_{out} vs. frequency graph change if R_2 were decreased to 1 kΩ? How would the graph change if C_1 were increased to 0.1 μF?